MYSQL 强制使用某个索引 select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser='CY6016
时间:2022-03-13 22:55
MySQL 5.5.30 5.6.20 版本,表大概有815万行
CREATE TABLE t_audit_operate_log ( Fid bigint(16) AUTO_INCREMENT, Fcreate_time int(10) unsigned NOT NULL DEFAULT ‘0‘, Fuser varchar(50) DEFAULT ‘‘, Fip bigint(16) DEFAULT NULL, Foperate_object_id bigint(20) DEFAULT ‘0‘, PRIMARY KEY (Fid), KEY indx_ctime (Fcreate_time), KEY indx_user (Fuser), KEY indx_objid (Foperate_object_id), KEY indx_ip (Fip) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
执行查询:
mysql> explain select count(*) from t_audit_operate_log where and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_audit_operate_log
type: ref
possible_keys: indx_ctime,indx_user
key: indx_user
key_len: 153
ref: const
rows: 2007326
Extra: Using where
发现,使用了一个不合适的索引, 不是很理想,于是改成指定索引:
mysql> explain select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser=‘CY6016@cyou-inc.com‘ and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G
select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser=‘CY6016@cyou-inc.com‘ and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_audit_operate_log
type: range
possible_keys: indx_ctime
key: indx_ctime
key_len: 5
ref: NULL
rows: 670092
Extra: Using where
实际执行耗时,后者比前者快了接近10
问题: 很奇怪,优化器为何不选择使用 indx_ctime 索引,而选择了明显会扫描更多行的 indx_user 索引。
分析2个索引的数据量如下: 两个条件的唯一性对比:
select count(*) from t_audit_operate_log where ; +----------+ | count(*) | +----------+ | 1238382 | +----------+
select count(*) from t_audit_operate_log where Fcreate_time>=1407254400 and Fcreate_time<=1407427199; +----------+ | count(*) | +----------+ | 198920 | +----------+
显然,使用索引indx_ctime好于indx_user,但MySQL却选择了indx_user. 为什么?
于是,使用 OPTIMIZER_TRACE进一步探索.
二 OPTIMIZER_TRACE的过程说明
以本处事例简要说明OPTIMIZER_TRACE的过程.
{\ "steps": [\ {\ "join_preparation": {\ ---优化准备工作 "select#": 1,\ "steps": [\ {\ "expanded_query": "/* select#1 */ select count(0) AS `count(*)` from `t_audit_operate_log` where ((`t_audit_operate_log`.`Fuser` = ) and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\ }\ ] /* steps */\ } /* join_preparation */\ },\ {\ "join_optimization": {\ ---优化工作的主要阶段,包括逻辑优化和物理优化两个阶段 "select#": 1,\ "steps": [\ ---优化工作的主要阶段, 逻辑优化阶段 {\ "condition_processing": {\ ---逻辑优化,条件化简 "condition": "WHERE",\ "original_condition": "((`t_audit_operate_log`.`Fuser` = ) and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))",\ "steps": [\ {\ "transformation": "equality_propagation",\ ---逻辑优化,条件化简,等式处理 "resulting_condition": "((`t_audit_operate_log`.`Fuser` = ) and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\ },\ {\ "transformation": "constant_propagation",\ ---逻辑优化,条件化简,常量处理 "resulting_condition": "((`t_audit_operate_log`.`Fuser` = ) and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\ },\ {\ "transformation": "trivial_condition_removal",\ ---逻辑优化,条件化简,条件去除 "resulting_condition": "((`t_audit_operate_log`.`Fuser` = ) and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\ }\ ] /* steps */\ } /* condition_processing */\ },\ ---逻辑优化,条件化简,结束 {\ "table_dependencies": [\ ---逻辑优化, 找出表之间的相互依赖关系. 非直接可用的优化方式. {\ "table": "`t_audit_operate_log`",\ "row_may_be_null": false,\ "map_bit": 0,\ "depends_on_map_bits": [\ ] /* depends_on_map_bits */\ }\ ] /* table_dependencies */\ },\ {\ "ref_optimizer_key_uses": [\ ---逻辑优化, 找出备选的索引 {\ "table": "`t_audit_operate_log`",\ "field": "Fuser",\ "equals": " "null_rejecting": false\ }\ ] /* ref_optimizer_key_uses */\ },\ {\ "rows_estimation": [\ ---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描和索引扫描的代价估算. 每个索引都估算索引扫描代价 {\ "table": "`t_audit_operate_log`",\ "range_analysis": {\ "table_scan": {\---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描的代价 "rows": 8150516,\ "cost": 1.73e6\ } /* table_scan */,\ "potential_range_indices": [\ ---逻辑优化, 列出备选的索引. 后续版本字符串变为potential_range_indexes {\ "index": "PRIMARY",\---逻辑优化, 本行表明主键索引不可用 "usable": false,\ "cause": "not_applicable"\ },\ {\ "index": "indx_ctime",\---逻辑优化, 索引indx_ctime "usable": true,\ "key_parts": [\ "Fcreate_time",\ "Fid"\ ] /* key_parts */\ },\ {\ "index": "indx_user",\---逻辑优化, 索引indx_user "usable": true,\ "key_parts": [\ "Fuser",\ "Fid"\ ] /* key_parts */\ },\ {\ "index": "indx_objid",\---逻辑优化, 索引 "usable": false,\ "cause": "not_applicable"\ },\ {\ "index": "indx_ip",\---逻辑优化, 索引 "usable": false,\ "cause": "not_applicable"\ }\ ] /* potential_range_indices */,\ "setup_range_conditions": [\ ---逻辑优化, 如果有可下推的条件,则带条件考虑范围查询 ] /* setup_range_conditions */,\ "group_index_range": {\---逻辑优化, 如带有GROUPBY或DISTINCT,则考虑是否有索引可优化这种操作. 并考虑带有MIN/MAX的情况 "chosen": false,\ "cause": "not_group_by_or_distinct"\ } /* group_index_range */,\ "analyzing_range_alternatives": {\---逻辑优化,开始计算每个索引做范围扫描的花费(等值比较是范围扫描的特例) "range_scan_alternatives": [\ {\ "index": "indx_ctime",\ ---[A] "ranges": [\ "1407081600 <= Fcreate_time <= 1407427199"\ ] /* ranges */,\ "index_dives_for_eq_ranges": true,\ "rowid_ordered": false,\ "using_mrr": true,\ "index_only": false,\ "rows": 688362,\ "cost": 564553,\ ---逻辑优化,这个索引的代价最小 "chosen": true\ ---逻辑优化,这个索引的代价最小,被选中. (比前面的table_scan 和其他索引的代价都小) },\ {\ "index": "indx_user",\ "ranges": [\ " <= Fuser <= ] /* ranges */,\ "index_dives_for_eq_ranges": true,\ "rowid_ordered": true,\ "using_mrr": true,\ "index_only": false,\ "rows": 1945894,\ "cost": 1.18e6,\ "chosen": false,\ "cause": "cost"\ }\ ] /* range_scan_alternatives */,\ "analyzing_roworder_intersect": {\ "usable": false,\ "cause": "too_few_roworder_scans"\ } /* analyzing_roworder_intersect */\ } /* analyzing_range_alternatives */,\---逻辑优化,开始计算每个索引做范围扫描的花费. 这项工作结算 "chosen_range_access_summary": {\---逻辑优化,开始计算每个索引做范围扫描的花费. 总结本阶段最优的. "range_access_plan": {\ "type": "range_scan",\ "index": "indx_ctime",\ "rows": 688362,\ "ranges": [\ "1407081600 <= Fcreate_time <= 1407427199"\ ] /* ranges */\ } /* range_access_plan */,\ "rows_for_plan": 688362,\ "cost_for_plan": 564553,\ "chosen": true\ -- 这里看到的cost和rows都比 indx_user 要来的小很多---这个和[A]处是一样的,是信息汇总. } /* chosen_range_access_summary */\ } /* range_analysis */\ }\ ] /* rows_estimation */\ ---逻辑优化, 估算每个表的元组个数. 行估算结束 },\ {\ "considered_execution_plans": [\ ---物理优化, 开始多表连接的物理优化计算 {\ "plan_prefix": [\ ] /* plan_prefix */,\ "table": "`t_audit_operate_log`",\ "best_access_path": {\ "considered_access_paths": [\ {\ "access_type": "ref",\ ---物理优化, 计算indx_user索引上使用ref方查找的花费, "index": "indx_user",\ "rows": 1.95e6,\ "cost": 683515,\ "chosen": true\ },\ ---物理优化, 本应该比较所有的可用索引,即打印出多个格式相同的但索引名不同的内容,这里却没有。推测是bug--没有遍历每一个索引. {\ "access_type": "range",\---物理优化,猜测对应的是indx_time(没有实例可进行调试,对比5.7的跟踪信息猜测而得) "rows": 516272,\ "cost": 702225,\---物理优化,代价大于了ref方式的683515,所以没有被选择 "chosen": false\ -- cost比上面看到的增加了很多,但rows没什么变化---物理优化,此索引没有被选择 }\ ] /* considered_access_paths */\ } /* best_access_path */,\ "cost_for_plan": 683515,\ ---物理优化,汇总在best_access_path 阶段得到的结果 "rows_for_plan": 1.95e6,\ "chosen": true\ -- cost比上面看到的竟然小了很多?虽然rows没啥变化 ---物理优化,汇总在best_access_path 阶段得到的结果 }\ ] /* considered_execution_plans */\ },\ {\ "attaching_conditions_to_tables": {\---逻辑优化,尽量把条件绑定到对应的表上 } /* attaching_conditions_to_tables */\ },\ {\ "refine_plan": [\ {\ "table": "`t_audit_operate_log`",\---逻辑优化,下推索引条件"pushed_index_condition";其他条件附加到表上做为过滤条件"table_condition_attached" }\ ] /* refine_plan */\ }\ ] /* steps */\ } /* join_optimization */\ \---逻辑优化和物理优化结束 },\ {\ "join_explain": {} /* join_explain */\ }\ ] /* steps */\
三 其他一个相似问题
单表扫描,使用ref和range从索引获取数据一例
四 问题的解决方式
遇到单表上有多个索引的时候,在MySQL5.6.20版本之前的版本,需要人工强制使用索引,以达到最好的效果
MYSQL 强制使用某个索引 select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser='CY6016,布布扣,bubuko.com