Python中的生成器是如何工作的?
时间:2023-04-24 20:34
生成器是一种特殊的迭代器,它内部也有 粗看代码,可能会觉着这个是个啥啊,为啥不直接用 在说明这个问题之前,我们先来写一个需求,输出 0——10000000 以内的数据,而后运行查看导出内存运行截图。 这里可以借助 安装 使用方法很简单,在需要检测的函数或者是代码前添加 生成 mprof run <executable> 导出图示,可以使用 mprof plot --output=filename 以下2个程序,都是输出0—9999999之间的数据,不同的是,第一个程序是使用 代码也有了,就可以按照上述来运行一下程序,并且导出内存信息 如上2张对比图,当我们将数据叠加进列表,再输出的时候,占用内存接近400M,而使用迭代器来计算下一个值内存仅使用16M。 通过上述案例,我们应该知道为什么要使用生成器了吧。 由于生成器表达式 可以编写如下代码: 运行后效果如下 通过上述实例,再结合下面这段生成器的运行过程,会加深对生成器的感触。 当 在 其中,代码 改下代码,输出结果如下: 以上就是Python中的生成器是如何工作的?的详细内容,更多请关注Gxl网其它相关文章!什么是python生成器
__iter__
方法和__next__
方法,在终止生成器的时候,还是会抛StopIteration
异常以此来退出循环,只不过相比于迭代器,生成器还有特性会保存“中间值”,下次运行的时候,还会借助这个“中间值”来操作。生成器的关键字是yield
,我们下面来写一个最简单的生成器。#!/usr/bin/env pythondef printNums(): i = 0 while i<10: yield i i = i + 1def main(): for i in printNums(): print(i)if __name__ == '__main__': main()
range
来生成,偏偏要用yield
,哎,不急,我们接着往下看为什么需要生成器,或者说,生成器解决了什么问题。为什么需要python生成器
调用python程序内存信息辅助说明
python
的memory_profiler
模块来检测程序内存的占用情况。memory_profiler
库:pip3 install memory_profiler
@profile
装饰器即可,例如:@profiledef main(): pass
.dat
文件python案例代码
range
而后给append
进list
中,第二个则是使用迭代器来生成该数据。main.py
程序@profiledef main(): data = list(range(10000000)) for i in data: passif __name__ == '__main__': main()
main_2.py
程序def printNum(): i = 0 while i < 10000000: yield i i = i + 1@profiledef main(): for i in printNum(): passif __name__ == '__main__': main()
运行程序
运行后内存信息查看
main.py
运行内存图main_2.py
运行内存图python生成器原理
yield
语句涉及到了python
解释权内部机制,所以很难查看其源码,很难获取其原理,不过我们可以利用yield
的暂停机制,来探寻一下生成器。def testGenerator(): print("进入生成器") yield "pdudo" print("第一次输出") yield "juejin" print("第二次输出")def main(): xx = testGenerator() print(next(xx)) print(next(xx))if __name__ == '__main__': main()
python
遇到yield
语句时,会记录当前函数的运行状态,并且暂停执行,将结果抛出。会持续等待下一次调用__next__
方法,该方法调用后,会恢复函数的运行,直至下一个yield
语句或者函数结束,执行到最后没有yield
函数可执行的时候,会抛StopIteration
来标志生成器的结束。生成器表达式
python
中,生成器除了写在函数中,使用yield
返回之外,还可以直接使用生成器表达式,额。。。可能很抽象,但是你看下面这段代码,你就明白了。def printNums(): for i in [1,2,3,4,5]: yield idef main(): for i in printNums(): print(i) gener = (i for i in [1,2,3,4,5]) for i in gener: print(i)if __name__ == '__main__': main()
(i for i in [1,2,3,4,5])
就等同于printNums
函数,其类型都是生成器,我们可以使用type
打印出来看下。