Python大数据为啥一定要用Numpy Array?
时间:2023-05-04 15:32
Numpy 是Python科学计算的一个核心模块。它提供了非常高效的数组对象,以及用于处理这些数组对象的工具。一个Numpy数组由许多值组成,所有值的类型是相同的。 Python的核心库提供了 List 列表。列表是最常见的Python数据类型之一,它可以调整大小并且包含不同类型的元素,非常方便。 那么List和Numpy Array到底有什么区别?为什么我们需要在大数据处理的时候使用Numpy Array?答案是性能。 Numpy数据结构在以下方面表现更好: 1.内存大小—Numpy数据结构占用的内存更小。 2.性能—Numpy底层是用C语言实现的,比列表更快。 3.运算方法—内置优化了代数运算等方法。 下面分别讲解在大数据处理时,Numpy数组相对于List的优势。 适当地使用Numpy数组替代List,你能让你的内存占用降低20倍。 对于Python原生的List列表,由于每次新增对象,都需要8个字节来引用新对象,新的对象本身占28个字节(以整数为例)。所以列表 list 的大小可以用以下公式计算: 而使用Numpy,就能减少非常多的空间占用。比如长度为n的Numpy整形Array,它需要: 可见,数组越大,你节省的内存空间越多。假设你的数组有10亿个元素,那么这个内存占用大小的差距会是GB级别的。 运行下面这个脚本,同样是生成某个维度的两个数组并相加,你就能看到原生List和Numpy Array的性能差距。 结果如下: 可以看到,Numpy比原生数组快1.95倍。 如果你细心的话,还能发现,Numpy array可以直接执行加法操作。而原生的数组是做不到这点的,这就是Numpy 运算方法的优势。 我们再做几次重复试验,以证明这个性能优势是持久性的。 结果如下: 可以看到,第二个输出的时间总是小得多,这就证明了这个性能优势是具有持久性的。 所以,如果你在做一些大数据研究,比如金融数据、股票数据的研究,使用Numpy能够节省你不少内存空间,并拥有更强大的性能。 参考文献:https://www.php.cn/link/5cce25ff8c3ce169488fe6c6f1ad3c97 我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注我们。 以上就是Python大数据为啥一定要用Numpy Array?的详细内容,更多请关注Gxl网其它相关文章!1.内存占用更小
64 + 8 * len(lst) + len(lst) * 28 字节
96 + len(a) * 8 字节
2.速度更快、内置计算方法
import timeimport numpy as npsize_of_vec = 1000def pure_python_version():t1 = time.time()X = range(size_of_vec)Y = range(size_of_vec)Z = [X[i] + Y[i] for i in range(len(X)) ]return time.time() - t1def numpy_version():t1 = time.time()X = np.arange(size_of_vec)Y = np.arange(size_of_vec)Z = X + Yreturn time.time() - t1t1 = pure_python_version()t2 = numpy_version()print(t1, t2)print("Numpy is in this example " + str(t1/t2) + " faster!")
0.00048732757568359375 0.0002491474151611328Numpy is in this example 1.955980861244019 faster!
import numpy as npfrom timeit import Timersize_of_vec = 1000X_list = range(size_of_vec)Y_list = range(size_of_vec)X = np.arange(size_of_vec)Y = np.arange(size_of_vec)def pure_python_version():Z = [X_list[i] + Y_list[i] for i in range(len(X_list)) ]def numpy_version():Z = X + Ytimer_obj1 = Timer("pure_python_version()", "from __main__ import pure_python_version")timer_obj2 = Timer("numpy_version()", "from __main__ import numpy_version")print(timer_obj1.timeit(10))print(timer_obj2.timeit(10)) # Runs Faster!print(timer_obj1.repeat(repeat=3, number=10))print(timer_obj2.repeat(repeat=3, number=10)) # repeat to prove it!
0.00297531206160783770.00014940369874238968[0.002683573868125677, 0.002754641231149435, 0.002803879790008068][6.536301225423813e-05, 2.9387418180704117e-05, 2.9171351343393326e-05]