您的位置:首页 > 技术中心 > 其他 >

如何在Python中根据运行时修改业务SQL代码?

时间:2023-05-08 16:00

1.缘起

最近项目在准备搞SASS化,SASS化有一个特点就是多租户,且每个租户之间的数据都要隔离,对于数据库的隔离方案常见的有数据库隔离,表隔离,字段隔离,目前我只用到表隔离和字段隔离(数据库隔离的原理也是差不多)。 对于字段隔离比较简单,就是查询条件不同而已,比如像下面的SQL查询:

SELECT * FROM t_demo WHERE tenant_id='xxx' AND is_del=0

但是为了严谨,需求上需要在执行SQL之前检查对应的表是否带上tenant_id的查询字段。

对于表隔离就麻烦了一些,他需要做到在运行的时候根据对应的租户ID来处理某个数据表,举个例子,假如有下面这样的一条SQL查询:

SELECT * FROM t_demo WHERE is_del=0

在遇到租户A时,SQL查询将变为:

SELECT * FROM t_demo_a WHERE is_del=0

在遇到租户B时,SQL查询将变为:

SELECT * FROM t_demo_b WHERE is_del=0

如果商户数量固定时,一般在代码里编写if-else来判断就可以了,但是常见的SASS化应用的商户是会一直新增的,那么对于这个SQL逻辑就会变成这样:

def sql_handle(tenant_id: str):    table_name: str = f"t_demo_{tenant_id}"    sql: str = f"SELECT * FROM {table_name} WHERE is_del=0"

但是这有几个问题,对于ORM来说,一开始只创建一个t_demo对应的表对象就可以了,现在却要根据多个商户创建多个表对象,这是不现实的,其次如果是裸写SQL,一般会使用IDE的检查,而对于这样的SQL:

sql: str = f"SELECT * FROM {table_name} WHERE is_del=0"

IDE是没办法进行检查的,当然还有一个最为严重的问题,就是当前的项目已经非常庞大了,如果每个相关表的调用都进行适配更改的话,那工程量就非常庞大了,所以最好的方案就是在引擎库得到用户传过来的SQL语句后且还没发送到MySQL服务器之前自动的根据商户ID更改SQL, 而要达到这样的效果,就必须侵入到我们使用的MySQL的引擎库,修改里面的方法来兼容我们的需求。

不管是使用dbutils还是sqlalchemy,都可以指定一个引擎库,目前常用的引擎库是pymysql,所以下文都将以pymysql为例进行阐述。

2.侵入库

由于必须侵入到我们使用的引擎库,所以我们应该先判断我们需要修改引擎库的哪个方法,在经过源码阅读后,我判定只要更改pymysql.cursors.Cursormogrify方法:

def mogrify(self, query, args=None):    """    Returns the exact string that is sent to the database by calling the    execute() method.    This method follows the extension to the DB API 2.0 followed by Psycopg.    """    conn = self._get_db()    if args is not None:        query = query % self._escape_args(args, conn)    return query

这个方法的作用就是把用户传过来的SQL和参数进行整合,生成一个最终的SQL,刚好符合我们的需求,于是可以通过继承的思路来创建一个新的属于我们自己的Cursor类:

import pymysqlclass Cursor(pymysql.cursors.Cursor):    def mogrify(self, query: str, args: Union[None, list, dict, tuple] = None) -> str:        # 在此可以编写处理还合成的SQL逻辑        mogrify_sql: str = super().mogrify(query, args)        # 在此可以编写处理合成后的SQL逻辑        return mogrify_sqlclass DictCursor(pymysql.cursors.DictCursorMixin, Cursor):    """A cursor which returns results as a dictionary"""    # 直接修改Cursor类的`mogrify`方法并不会影响到`DictCursor`类,所以我们也要创建一个新的`Cursor`类。

创建好了Cursor类后,就需要考虑如何在pymysql中应用我们自定义的Cursor类了,一般的Mysql连接库都支持我们传入自定义的Cursor类,比如pymysql:

import pymysql.cursors# Connect to the databaseconnection = pymysql.connect(    host='localhost',    user='user',    password='passwd',    database='db',    charset='utf8mb4',    cursorclass=pymysql.cursors.DictCursor)

我们可以通过cursorclass来指定我们的Cursor类,如果使用的库不支持或者是其它原因则需要使用猴子补丁的方法,具体的使用方法见Python探针完成调用库的数据提取。

3.获取商户ID

现在我们已经搞定了在何处修改SQL的问题了,接下来就要思考如何在mogrify方法获取到商户ID以及那些表要进行替换,一般我们在进行一段代码调用时,有两种传参数的方法, 一种是传数组类型的参数:

with conn.cursor() as cursor:    cursor.execute("SELECT * FROM t_demo WHERE is_del=%s", (0, ))

一种是传字典类型的参数:

with conn.cursor() as cursor:    cursor.execute("SELECT * FROM t_demo WHERE is_del=%(is_del)s", {"is_del": 0})

目前大多数的项目都存在这两种类型的编写习惯,而引擎库在执行execute时会经过处理后才把参数sqlargs传给了mogrify,如果我们是使用字典类型的参数,那么可以在里面嵌入我们需要的参数,并在mogrify里面提取出来,但是使用了数组类型的参数或者是ORM库的话就比较难传递参数给mogrify方法了,这时可以通过context隐式的把参数传给mogrify方法,具体的分析和原理可见:python如何使用contextvars模块源码分析。

context的使用方法很简单, 首先是创建一个context封装的类:

from contextvars import ContextVar, Tokenfrom typing import Any, Dict, Optional, Setcontext: ContextVar[Dict[str, Any]] = ContextVar("context", default={})class Context(object):    """基础的context调用,支持Type Hints检查"""    tenant_id: str    replace_table_set: Set[str]    def __getattr__(self, key: str) -> Any:        value: Any = context.get().get(key)        return value    def __setattr__(self, key: str, value: Any) -> None:        context.get()[key] = valueclass WithContext(Context):    """简单的处理reset token逻辑,和context管理,只用在业务代码"""    def __init__(self) -> None:        self._token: Optional[Token] = None    def __enter__(self) -> "WithContext":        self._token = context.set({})        return self    def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:        if self._token:            context.reset(self._token)            self._token = None

接下来在业务代码中,通过context传入当前业务对应的参数:

with WithContext as context:    context.tenant_id = "xxx"    context.replace_table_set = {"t_demo"}    with conn.cursor() as cursor:        cursor.execute("SELECT * FROM t_demo WHERE is_del=%s", (0, ))

然后在mogrify中通过调用context即可获得对应的参数了:

import pymysqlclass Cursor(pymysql.cursors.Cursor):    def mogrify(self, query: str, args: Union[None, list, dict, tuple] = None) -> str:        tenant_id: str = context.tenant_id        replace_table_set: Set[str] = context.replace_table_set        # 在此可以编写处理还合成的SQL逻辑        mogrify_sql: str = super().mogrify(query, args)        # 在此可以编写处理合成后的SQL逻辑        return mogrify_sql

4.修改SQL

现在,万事俱备,只剩下修改SQL的逻辑,之前在做别的项目的时候,建的表都是十分的规范,它们是以t_xxx的格式给表命名,这样一来替换表名十分方便,只要进行两次替换就可以兼容大多数情况了,代码如下:

import pymysqlclass Cursor(pymysql.cursors.Cursor):    def mogrify(self, query: str, args: Union[None, list, dict, tuple] = None) -> str:        tenant_id: str = context.tenant_id        replace_table_set: Set[str] = context.replace_table_set        # 简单示例,实际上正则的效率会更好        for replace_table in replace_table_set:            if replace_table in query:                # 替换表名                query = query.replace(f" {replace_table} ", f" {replace_table}_{tenant_id} ")                # 替换查询条件中带有表名的                query = query.replace(f" {replace_table}.", f" {replace_table}_{tenant_id}.")        mogrify_sql: str = super().mogrify(query, args)        # 在此可以编写处理合成后的SQL逻辑        return mogrify_sql

但是现在项目的SQL规范并不是很好,有些表名还是MySQL的关键字,所以靠简单的替换是行不通的,同时这个需求中,一些表只需要字段隔离,需要确保有带上对应的字段查询,这就意味着必须有一个库可以来解析SQL,并返回一些数据使我们可以比较方便的知道SQL中哪些是表名,哪些是查询字段了。

目前在Python中有一个比较知名的SQL解析库--sqlparse,它可以通过解析引擎把SQL解析成一个Python对象,之后我们就可以通过一些语法来判断哪些是SQL关键字, 哪些是表名,哪些是查询条件等等。但是这个库只实现一些底层的API,我们需要对他和SQL比较了解之后才能实现一些比较完备的功能,比如下面3种常见的SQL:

SELECT * FROM t_demoSELECT * FROM t_demo as demoSELECT * FROM t_other as other LEFT JOIN t_demo demo on demo.xxx==other.xxx

如果我们要通过sqlparse来提取表名的话就需要处理这3种情况,而我们如果要每一个情况都编写出来的话,那将会非常费心费力,同时也可能存在遗漏的情况,这时就需要用到另外一个库--sql_metadata,这个库是基于sqlparse和正则的解析库,同时提供了大量的常见使用方法的封装,我们通过直接调用对应的函数就能知道SQL中有哪些表名,查询字段是什么了。

目前已知这个库有一个缺陷,就是会自动去掉字段的符号, 比如表名为关键字时,我们需要使用`符号把它包起来:

SELECT * FROM `case`

但在经过sql_metadata解析后得到的表名是case而不是`case`,需要人为的处理,但是我并不觉得这是一个BUG,自己不按规范创建表,能怪谁呢。

接下来就可以通过sql_metadata的方法来实现我需要的功能了,在根据需求修改后,代码长这样(说明见注释):

from typing import Dict, Set, Tuple, Unionimport pymysqlimport sql_metadataclass Cursor(pymysql.cursors.Cursor):    def mogrify(self, query: str, args: Union[None, list, dict, tuple] = None) -> str:        tenant_id: str = context.tenant_id        # 生成一个解析完成的SQL对象        sql_parse: sql_metadata.Parser = sql_metadata.Parser(query)        # 新加的一个属性,这里存下需要校验查询条件的表名        check_flag = False         where_table_set: Set[str] = context.where_table_set        # 该方法会获取到SQL对应的table,返回的是一个table的数组        for table_name in sql_parse.tables:            if table_name in where_table_set:                if sql_parse.columns_dict:                    # 该方法会返回SQL对应的字段,其中分为select, join, where等,这里只用到了where                    for where_column in sql_parse.columns_dict.get("where", []):                        # 如果连表,里面存的是类似于t_demo.tenant_id,所以要兼容这一个情况                        if "tenant_id" in where_column.lower().split("."):                            check_flag = True                            break        if not check_flag:            # 检查不通过就抛错            raise RuntimeError()        # 更换表名的逻辑        replace_table_set: Set[str] = context.replace_table_set        new_query: str = query        for table_name in sql_parse.tables:            if table_name in replace_table_set:                new_query = ""                # tokens存放着解析完的数据,比如SELECT * FROM t_demo解析后是                # [SELECT, *, FROM, t_demo]四个token                for token in sql_parse.tokens:                    # 判断token是否是表名                      if token.is_potential_table_name:                        # 提取规范的表名                        parse_table_name: str = token.stringified_token.strip()                        if parse_table_name in replace_table_set:                            new_table_name: str = f" {parse_table_name}_{tenant_id}"                            # next_token代表SQL的下一个字段                            if token.next_token.normalized != "AS":                                # 如果当前表没有设置别名                                # 通过AS把替换前的表名设置为新表名的别名,这样一来后面的表名即使没进行更改,也是能读到对应商户ID的表                                new_table_name += f" AS {parse_table_name}"                            query += new_table_name                            continue                    # 通过stringified_token获取的数据会自动带空格,比如`FROM`得到的会是` FROM`,这样拼接的时候就不用考虑是否加空格了                    new_query += token.stringified_token        mogrify_sql: str = super().mogrify(new_query, args)        # 在此可以编写处理合成后的SQL逻辑        return mogrify_sql

这份代码十分简单,它只做简单介绍,事实上这段逻辑会应用到所有的SQL查询中,我们应该要保证这段代码是没问题的,同时不要有太多的性能浪费,所以在使用的时候要考虑到代码拆分和优化。 比如在使用的过程中可以发现,我们的SQL转换和检查都是在父类的Cursor.mogrify之前进行的,这就意味着不管我们代码逻辑里cursor.execute传的参数是什么,对于同一个代码逻辑来说,传过来的query值是保持不变的,比如下面的代码:

def get_user_info(uid: str) -> Dict[str, Any]:    with conn.cursor() as cursor:        cursor.execute("SELECT * FROM t_user WHERE uid=%(uid)s", {"uid": uid})        return cursor.fetchone() or {}

这段代码中传到Cursor.mogrify的query永远为SELECT * FROM t_user WHERE uid=%(uid)s,有变化的只是args中uid的不同。 有了这样的一个前提条件,那么我们就可以把query的校验结果和转换结果缓存下来,减少每次都需要解析SQL再校验造成的性能浪费。至于如何实现缓存则需要根据自己的项目来决定,比如项目中只有几百个SQL执行,那么直接用Pythondict来存放就可以了,如果项目中执行的SQL很多,同时有些执行的频率非常的高,有些执行的频率非常的低,那么可以考虑使用LRU来缓存。

以上就是如何在Python中根据运行时修改业务SQL代码?的详细内容,更多请关注Gxl网其它相关文章!

热门排行

今日推荐

热门手游