如何掌握Python的垃圾回收机制。
时间:2023-05-09 00:12
得益于 垃圾回收算法有很多,主要有: 在 引用计数原理比较简单: 每个对象有一个整型的引用计数属性。用于记录对象被引用的次数。例如对象 在 运行上面代码,可以得到输出结果为 上面我们看到,创建一个 对象被显式销毁,如 对象所在的容器被销毁,或从容器中删除对象。 为了更好的理解计数器的增减,我们运行实际代码,一目了然。 输出结果如下: 高效、逻辑简单,只需根据规则对计数器做加减法。 实时性。一旦对象的计数器为零,就说明对象永远不可能再被用到,无须等待特定时机,直接释放内存。 需要为对象分配引用计数空间,增大了内存消耗。 当需要释放的对象比较大时,如字典对象,需要对引用的所有对象循环嵌套调用,可能耗时比较长。 循环引用。 这是引用计数的致命伤,引用计数对此是无解的,因此必须要使用其它的垃圾回收算法对其进行补充。 上一小节提到,引用计数算法无法解决循环引用问题,循环引用的对象会导致大家的计数器永远都不会等于 标记阶段。将所有的对象看成图的节点,根据对象的引用关系构造图结构。从图的根节点遍历所有的对象,所有访问到的对象被打上标记,表明对象是“可达”的。 清除阶段。遍历所有对象,如果发现某个对象没有标记为“可达”,则就回收。 以具体代码示例说明: 上面代码中,a和b相互引用,e引用了c和d。整个引用关系如下图所示 如果采用引用计数器算法,那么a和b两个对象将无法被回收。而采用标记清除法,从根节点(即e对象)开始遍历,c、d、e三个对象都会被标记为 这是读者可能会有疑问,为什么确定根节点是e,而不会是a、b、c、d呢?这里就有讲究了,什么样的对象会被看成是根节点呢?一般而言,根节点的选取包括(但不限于)如下几种: 当前栈帧中的本地变量表中引用的对象,如各个线程被调用的方法堆栈中使用到的参数、 局部变量、 临时变量等。 全局静态变量 ... 在执行垃圾回收过程中,程序会被暂停,即 为了减少程序的暂停时间,采用 分代回收基于这样的法则: 接大部分的对象生命周期短,大部分对象都是朝生夕灭。 经历越多次数的垃圾收集且活下来的对象,说明该对象越不可能是垃圾,应该越少去收集。 对象刚创建时为 如果在一轮 如果再次在扫描中活下来,则进入 当某世代中分配的对象数量与被释放的对象之差达到某个阈值的时,将触发对该代的扫描。当某世代触发扫描时,比该世代年轻的世代也会触发扫描。 那么这个阈值是多少呢?我们可以通过代码查看或者修改,示例代码如下 输出结果如下: 以上就是如何掌握Python的垃圾回收机制。的详细内容,更多请关注Gxl网其它相关文章!Python
的自动垃圾回收机制,在 Python
中创建对象时无须手动释放。这对开发者非常友好,让开发者无须关注低层内存管理。但如果对其垃圾回收机制不了解,很多时候写出的 Python
代码会非常低效。引用计数
、 标记-清除
、 分代收集
等。python
中,垃圾回收算法以 引用计数
为主, 标记-清除
和 分代收集
两种机制为辅。1 引用计数
1.1 引用计数算法原理
A
,如果有一个对象引用了 A
,则 A
的引用计数 +1
。当引用删除时, A
的引用计数 -1
。当 A
的引用计数为0时,即表示对象 A
不可能再被使用,直接回收。Python
中,可以通过 sys
模块的 getrefcount
函数获取指定对象的引用计数器的值,我们以实际例子来看。import sysclass A(): def __init__(self): pass a = A()print(sys.getrefcount(a))
2
。1.2 计数器增减条件
A
对象,并将对象赋值给 a
变量后,对象的引用计数器值为 2
。那么什么时候计数器会 +1
,什么时候计数器会 -1
呢?1.2.1 引用计数+1的条件
A()a=A()func(a)arr=[a,a]
1.2.2 引用计数-1的条件
del a
。变量重新赋予新的对象,例如 a=0
。对象离开它的作用域,如 func
函数执行完毕时, func
函数中的局部变量(全局变量不会)。1.2.3 代码实战
import sys class A(): def __init__(self): pass print("创建对象 0 + 1 =", sys.getrefcount(A()))a = A()print("创建对象并赋值 0 + 2 =", sys.getrefcount(a))b = ac = aprint("赋给2个变量 2 + 2 =", sys.getrefcount(a))b = Noneprint("变量重新赋值 4 - 1 =", sys.getrefcount(a))del cprint("del对象 3 - 1 =", sys.getrefcount(a))d = [a, a, a]print("3次加入列表 2 + 3 =", sys.getrefcount(a))def func(c): print('传入函数 1 + 2 = ', sys.getrefcount(c))func(A())
创建对象 0 + 1 = 1创建对象并赋值 0 + 2 = 2赋给2个变量 2 + 2 = 4变量重新赋值 4 - 1 = 3del对象 3 - 1 = 23次加入列表 2 + 3 = 5传入函数 1 + 2 = 3
1.3 引用计数的优点与缺点
1.3.1 引用计数优点
1.3.2 引用计数缺点
2 标记-清除
0
,带来无法回收的问题。标记-清除
算法主要用于潜在的循环引用问题,该算法分为2步:class A(): def __init__(self): self.obj = None def func(): a = A() b = A() c = A() d = A() a.obj = b b.obj = a return [c, d]e = func()
可达
,而a和b无法被标记。因此a和b会被回收。3 分代收集
3.1 分代收集原理
stop-the-world
。这里很好理解:你妈妈在打扫房间的时候,肯定不允许你在房间内到处丢垃圾,要不然永远也无法打扫干净。分代回收
( Generational Collection
)降低垃圾收集耗时。Python
中,对象一共有3种世代: G0
, G1
, G2
。G0
。GC
扫描中存活下来,则移至 G1
,处于 G1
的对象被扫描次数会减少。G2
,处于 G1
的对象被扫描次数将会更少。3.2 触发GC时机
import gcthreshold = gc.get_threshold()print("各世代的阈值:", threshold)# 设置各世代阈值# gc.set_threshold(threshold0[, threshold1[, threshold2]])gc.set_threshold(800, 20, 20)
各世代的阈值: (700, 10, 10)